Lesson 3: Angle Sum of a Triangle (Day 1)

- The Angle Sum Theorem for triangles states that the sum of the interior angles of a triangle is always 180° (\angle sum of Δ).
- It does not matter what kind of triangle (i.e., acute, obtuse, right) when you add the measure of the three angles, you always get a sum of 180 .

2.

3.

Geometry Fact: Supplementryy X's

$$
\begin{aligned}
& \text { Equation: } \\
& (7 x+4)+(10 x-28)=180 \\
& 7 \times+4+10 \times-28=180 \\
& 17 x-24=180 \\
& +24 \text { t24 } \\
& \frac{17 x}{17}=\frac{204}{17} \\
& x=12 \\
& \text { Geometry Fact: } \\
& \text { Equation: }
\end{aligned}
$$

$$
\begin{gathered}
8 x-23 \mid=16 x+15 \\
-6 x \\
2 x-23=15 \\
+23+23 \\
\frac{2 x}{2}=\frac{38}{2} \\
x=19
\end{gathered}
$$

Classwork

Concept Development

Note that the sum of angles 7 and 9 must equal 90° because of the known right angle in the right triangle.

We want to prove that the angle sum of any triangle is 180°. To do so, we will use some facts that we already know about geometry:

- A straight angle is 180° in measure.
- Corresponding angles of parallel lines are equal in measure (corr. $\angle s, \overline{A B} \| \overline{C D}$).
- Alternate interior angles of parallel lines are equal in measure (alt. $\angle s, \overline{A B} \| \overline{C D}$).

Exploratory Challenge 1

Let triangle $A B C$ be given. On the ray from B to C, take a point D so that C is between B and D. Through point C, draw a line parallel to $A B$ as shown. Extend the parallel lines $A B$ and $C E$. Line $A C$ is the transversal that intersects the parallel lines.

The 3 angles that make up line BCD are....

a. Name the three interior angles of triangle $A B C$.
b. Name the straight angle.
c. What kinds of angles are $\angle A B C$ and $\angle E C D$? What does that mean about their measures?
d. What kinds of angles are $\angle B A C$ and $\angle E C A$? What does that mean about their measures?
e. We know that $\angle B C D=\angle B C A+\angle E C A+\angle E C D=180^{\circ}$. Use substitution to show that the three interior angles of the triangle have a sum of 180°.
a. Name the three interior angles of triangle $A B C$.
$\angle A B C, \angle B A C, \angle B C A$
b. Name the straight angle.
$\angle B C D$
Our goal is to show that the three interior angles of triangle ABC are equal to the angles that make up the straight angle. We already know that a straight angle is 180° in measure. If we can show that the interior angles of the triangle are the same as the angles of the straight angle, then we will have proven that the interior angles of the triangle have a sum of 180°.
c. What kinds of angles are $\angle A B C$ and $\angle E C D$? What does that mean about their measures?
$\angle A B C$ and $\angle E C D$ are corresponding angles. Corresponding angles of parallel lines are equal in measure. (corr. $\angle S, \overline{A B} \| \overline{C E}$)
d. What kinds of angles are $\angle B A C$ and $\angle E C A$? What does that mean about their measures?
$\angle B A C$ and $\angle E C A$ are alternate interior angles. Alternate interior angles of parallel lines are equal in measure. (alt. $\angle s, \overline{A B} \| \overline{C E}$)
e. We know that $\angle B C D=\angle B C A+\angle E C A+\angle E C D=180^{\circ}$. Use substitution to show that the three interior angles of the triangle have a sum of 180°.
$\angle B C D=\angle B C A+\angle B A C+\angle A B C=180^{\circ}(\angle$ sum of $\triangle)$.

Exploratory Challenge 2

The figure below shows parallel lines L_{1} and L_{2}. Let m and n be transversals that intersect L_{1} at points B and C, respectively, and L_{2} at point F, as shown. Let A be a point on L_{1} to the left of B, D be a point on L_{1} to the right of C, G be a point on L_{2} to the left of F, and E be a point on L_{2} to the right of F.

a. Name the triangle in the figure.

b. Name a straight angle that will be useful in proving that the sum of the interior angles of the triangle is 180°.
c. Write your proof below.
a. Name the triangle in the figure.
$\triangle B C F$
b. Name a straight angle that will be useful in proving that the sum of the interior angles of the triangle is 180°.
$\angle G F E$
As before, our goal is to show that the interior angles of the triangle are equal to the straight angle. Use what you learned from Exploratory Challenge 1 to show that interior angles of a triangle have a sum of 180°.
c. Write your proof below.

The straight angle, $\angle G F E$ is comprised of angles $\angle G F B, \angle B F C, \angle E F C$. Alternate interior angles of parallel lines are equal in measure, (alt. $\angle s, \overline{A D} \| \overline{C E}$). For that reason, $\angle B C F=\angle E F C$ and $\angle C B F=\angle G F B$. Since $\angle G F E$ is a straight angle, it is equal to 180°. Then $\angle G F E=\angle G F B+\angle B F C+\angle E F C=180^{\circ} . B y$ substitution, $\angle G F E=\angle C B F+\angle B F C+\angle B C F=180^{\circ}$. Therefore, the sum of the interior angles of a triangle is $\mathbf{1 8 0}$. (\angle sum of \triangle).

Lesson Summary

All triangles have a sum of interior angles equal to 180°.
The proof that a triangle has a sum of interior angles equal to 180° is dependent upon the knowledge of straight angles and angles relationships of parallel lines cut by a transversal.

Problem Set

1. In the diagram below, line $A B$ is parallel to line $C D$, i.e., $L_{A B} \| L_{\mathrm{cD}}$. The measure of angle $\angle A B C=28^{\circ}$, and the measure of angle $\angle E D C=42^{\circ}$. Find the measure of angl $\angle C E D$. Explain why you are correct by presenting an informal argument that uses the angle sum of a triangle.

2. In the diagram below, line $A B$ is parallel to line $C D$, i.e., $L_{A B} \| L_{C D}$. The measure of angle $\angle A B E=38^{\circ}$ and the measure of angle $\angle E D C=16^{\circ}$. Find the measure of angle $\angle B E D$. Explain why you are correct by presenting an informal argument that uses the angle sum of a triangle. (Hint: find the measure of angle $\angle C E D$ first, then use that measure to find the measure of angle $\angle B E D$.)

Supplemental Practice

1. What is the measure of $\angle A C B$?

$83+64+x=180$

